ÔÚLinuxϵͳÉÏʹÓÃPyCharm¾ÙÐдó¹æÄ£Êý¾Ý´¦ÀíµÄÉèÖÃÒªÁì
ÔÚlinuxϵͳÉÏʹÓÃpycharm¾ÙÐдó¹æÄ£Êý¾Ý´¦ÀíµÄÉèÖÃÒªÁì
ÔÚÊý¾Ý¿ÆѧºÍ»úеѧϰÁìÓò£¬´ó¹æÄ£Êý¾Ý´¦ÀíÊǷǾ³£¼ûµÄʹÃü¡£ÔÚLinuxϵͳÉÏʹÓÃPyCharm¾ÙÐдó¹æÄ£Êý¾Ý´¦Àí¿ÉÒÔÌṩ¸üºÃµÄ¿ª·¢ÇéÐκ͸ü¸ßµÄЧÂÊ¡£±¾ÎĽ«ÏÈÈÝÔõÑùÔÚLinuxϵͳÉÏÉèÖÃPyCharmÒÔ±ã¾ÙÐдó¹æÄ£Êý¾Ý´¦Àí£¬²¢ÌṩһЩʹÓÃʾÀý´úÂë¡£
×°ÖúÍÉèÖÃPythonÇéÐÎ
ÔÚLinuxϵͳÉÏ£¬Pythonͨ³£ÒѾԤװÁË¡£¿ÉÒÔͨ¹ýÔÚÖÕ¶ËÊäÈëÒÔÏÂÏÂÁîÀ´¼ì²éPythonÊÇ·ñ×°Öãº
python --version
µÇ¼ºó¸´ÖÆ
ÈôÊÇ·µ»ØPython°æ±¾ºÅ£¬ËµÃ÷ÒѾװÖÃÁËPython¡£ÈôÊÇûÓÐ×°ÖÃPython£¬ÔòÐèÒªÏÈ×°ÖÃPython¡£
ÔÚPyCharmÖÐÉèÖÃPythonÚ¹ÊÍÆ÷£º
·¿ªPyCharm£¬µã»÷²Ëµ¥À¸Öеġ°File¡±>¡°Settings¡±¡£
ÔÚµ¯³öµÄ´°¿ÚÖУ¬Ñ¡Ôñ¡°Project: Your_Project_Name¡±>¡°Project Interpreter¡±¡£
µã»÷ÓÒÉϽǵġ°Add¡±°´Å¥£¬²¢Ñ¡ÔñϵͳÉÏÒѾװÖõÄPythonÚ¹ÊÍÆ÷¡£
µã»÷¡°OK¡±°´Å¥ÉúÑÄÉèÖá£
×°Öò¢ÉèÖÃPyCharm
ÏÂÔØPyCharmÉçÇø°æ»òרҵ°æ£¬¿ÉÒÔ´ÓJetBrains¹ÙÍøÏÂÔز¢×°Öá£
×°ÖÃÍê³Éºó£¬·¿ªPyCharm²¢½¨ÉèÒ»¸öÐÂÏîÄ¿¡£
µ¼ÈëÊý¾Ý´¦Àí¿â
ÔÚPyCharmµÄÏîÄ¿ÖУ¬·¿ªÖն˲¢×°ÖÃËùÐèµÄÊý¾Ý´¦Àí¿â£¬ÀýÈçpandas¡¢numpy¡¢matplotlibµÈ¡£¿ÉÒÔʹÓÃÒÔÏÂÏÂÁî¾ÙÐÐ×°Öãº
pip install pandas numpy matplotlib
µÇ¼ºó¸´ÖÆ
ʹÓÃʾÀý´úÂë¾ÙÐдó¹æÄ£Êý¾Ý´¦Àí
ÏÂÃæÊÇÒ»¸öʹÓÃpandas¿â¾ÙÐдó¹æÄ£Êý¾Ý´¦ÀíµÄʾÀý´úÂ룺
import pandas as pd # ¶ÁÈ¡´ó¹æÄ£Êý¾ÝÎļþ data = pd.read_csv('large_data.csv') # Éó²éÊý¾ÝÇ°¼¸ÐÐ print(data.head()) # Éó²éÊý¾Ýͳ¼ÆÐÅÏ¢ print(data.describe()) # Êý¾Ýϴ媺ʹ¦Àí data.dropna() # ɾ³ýȱʧֵ data = data[data['column_name'] > 0] # ¹ýÂËÊý¾Ý data['new_column'] = data['column1'] + data['column2'] # ½¨ÉèÐÂÁÐ # Êý¾Ý¿ÉÊÓ»¯ import matplotlib.pyplot as plt plt.plot(data['column_name']) plt.xlabel('X-axis label') plt.ylabel('Y-axis label') plt.title('Data Visualization') plt.show()
µÇ¼ºó¸´ÖÆ
ÒÔÉÏ´úÂëʹÓÃpandas¿â¶ÁÈ¡´ó¹æÄ£Êý¾ÝÎļþ£¬²¢Õ¹Ê¾Á˳£¼ûµÄÊý¾Ý´¦ÀíºÍ¿ÉÊÓ»¯²Ù×÷¡£Æ¾Ö¤ÏÖʵÐèÇ󣬿ÉÒÔÍŽáÆäËû¿â¾ÙÐиüÖØ´óµÄÊý¾Ý´¦ÀíʹÃü¡£
×ܽ᣺
ÔÚLinuxϵͳÉÏʹÓÃPyCharm¾ÙÐдó¹æÄ£Êý¾Ý´¦Àí¿ÉÒÔÌá¸ß¿ª·¢Ð§ÂʺÍÀû±ã´úÂëÖÎÀí¡£±¾ÎÄÏÈÈÝÁËÔõÑùÔÚLinuxϵͳÉÏÉèÖÃPyCharm£¬²¢ÌṩÁËÒ»¸öʹÓÃʾÀý´úÂëµÄ°¸Àý¡£Ï£Íû¶ÁÕß¿ÉÒÔÔÚÏÖʵÏîÄ¿ÖÐÎÞаÔËÓÃÕâЩҪÁ죬ÌáÉý´ó¹æÄ£Êý¾Ý´¦ÀíµÄЧÂʺÍ׼ȷÐÔ¡£
ÒÔÉϾÍÊÇÔÚLinuxϵͳÉÏʹÓÃPyCharm¾ÙÐдó¹æÄ£Êý¾Ý´¦ÀíµÄÉèÖÃÒªÁìµÄÏêϸÄÚÈÝ£¬¸ü¶àÇë¹Ø×¢±¾ÍøÄÚÆäËüÏà¹ØÎÄÕ£¡