ÔÚLinuxÉÏʹÓÃVisual Studio Code¾ÙÐÐÊý¾Ý¿ÆѧµÄÍƼöÉèÖÃ
ÔÚlinuxÉÏʹÓÃvisual studio code¾ÙÐÐÊý¾Ý¿ÆѧµÄÍƼöÉèÖÃ
Ëæ×ÅÊý¾Ý¿ÆѧµÄ¿ìËÙÉú³¤£¬Ô½À´Ô½¶àµÄÊý¾ÝÆÊÎöʦºÍÊý¾Ý¿Æѧ¼ÒÑ¡ÔñʹÓÃVisual Studio Code£¨¼ò³ÆVS Code£©¾ÙÐÐÊý¾Ý¿ÆѧÊÂÇé¡£VS CodeÊÇ΢Èí¿ª·¢µÄÒ»¿î¿ªÔ´ÇáÁ¿¼¶´úÂë±à¼Æ÷£¬Ò²ÊÇÒ»¸ö¹¦Ð§¸»ºñµÄ¼¯³É¿ª·¢ÇéÐΣ¨IDE£©¡£Ëü¾ßÓи»ºñµÄÀ©Õ¹¹¦Ð§£¬¿ÉÒÔÖª×ãÊý¾Ý¿Æѧ¼ÒµÄÐèÇ󣬲¢ÇÒÍêÈ«Ãâ·Ñ¡£
±¾ÎĽ«ÏÈÈÝÔõÑùÔÚLinuxÉÏ׼ȷÉèÖÃVS CodeÒÔ¾ÙÐÐÊý¾Ý¿ÆѧÊÂÇ飬²¢Ö´ÐÐһЩ³£¼ûµÄÊý¾Ý¿ÆѧʹÃü£¬ÈçÊý¾Ý´¦Àí¡¢¿ÉÊÓ»¯ºÍ»úеѧϰ¡£
°ì·¨1£º×°ÖÃVS Code
Ê×ÏÈ£¬ÄúÐèÒªÔÚLinuxÉÏ×°ÖÃVS Code¡£Äú¿ÉÒÔ´ÓVS CodeµÄ¹Ù·½ÍøÕ¾https://code.visualstudio.com/ ÏÂÔØÊÊÓÃÓÚLinuxµÄ×°Öðü£¬»òÕßͨ¹ý°ü¹ÜÀíÆ÷¾ÙÐÐ×°Öá£×°ÖÃÍêºó£¬ÇëÈ·±£VS Code¿ÉÒÔÔÚÏÂÁîÐÐÖÐͨ¹ý”code”ÏÂÁîÆô¶¯¡£
°ì·¨2£º×°ÖÃPythonÀ©Õ¹
ÔÚVS CodeÖУ¬´ó´ó¶¼Êý¾Ý¿ÆѧÊÂÇ鶼ÊÇʹÓÃPython¾ÙÐеġ£Òò´Ë£¬ÎÒÃÇÐèҪװÖÃPythonÀ©Õ¹ÒÔ±ãÓÚÔÚVS CodeÖбàд¡¢ÔËÐк͵÷ÊÔPython´úÂë¡£·¿ªVS Code£¬µã»÷×ó²àµÄÀ©Õ¹Í¼±ê£¨»ò°´ÏÂCtrl+Shift+X£©£¬ÔÚËÑË÷À¸ÖÐÊäÈë”Python”£¬µã»÷×°ÖÃÃûΪ”Python”µÄÀ©Õ¹¡£
°ì·¨3£ºÉèÖÃPythonÚ¹ÊÍÆ÷
×°ÖÃÍêPythonÀ©Õ¹ºó£¬ÄúÐèÒªÉèÖÃVS CodeʹÓÃ׼ȷµÄPythonÚ¹ÊÍÆ÷¡£µã»÷VS Code×óϽǵĔPython”Ñ¡Ôñ¿ò£¬ÔÚµ¯³öµÄ²Ëµ¥ÖÐÑ¡ÔñÄúÏëҪʹÓõÄPythonÚ¹ÊÍÆ÷¡£ÈôÊÇÄúµÄϵͳÖÐ×°ÖÃÁ˶à¸öPython°æ±¾£¬¿ÉÒÔÑ¡ÔñºÏÊʵİ汾¡£ÈôÊÇûÓÐÕÒµ½ÄúÏëÒªµÄÚ¹ÊÍÆ÷£¬ÄúÐèÒªÊÖ¶¯Ö¸¶¨PythonÚ¹ÊÍÆ÷µÄ·¾¶¡£
°ì·¨4£ºÊ¹ÓÃJupyterÌõ¼Ç±¾
JupyterÌõ¼Ç±¾ÊÇÒ»¸ö³£ÓõĽ»»¥Ê½±à³Ì¹¤¾ß£¬¹ØÓÚÊý¾Ý¿ÆѧÊÂÇéºÜÊÇÓÐ×ÊÖú¡£ÔÚVS CodeÖУ¬ÎÒÃÇ¿ÉÒÔͨ¹ý×°ÖÃJupyterÀ©Õ¹À´Ê¹ÓÃJupyterÌõ¼Ç±¾¡£·¿ªVS Code£¬µã»÷×ó²àµÄÀ©Õ¹Í¼±ê£¬ÔÚËÑË÷À¸ÖÐÊäÈë”Jupyter”£¬µã»÷×°ÖÃÃûΪ”Jupyter”µÄÀ©Õ¹¡£
×°ÖÃÍêJupyterÀ©Õ¹ºó£¬Äú¿ÉÒÔͨ¹ýµã»÷VS Code×óÉϽǵĔÎļþ”²Ëµ¥£¬Ñ¡Ôñ”н¨”->”Ìõ¼Ç±¾”À´½¨ÉèÒ»¸öеÄJupyterÌõ¼Ç±¾¡£Äú¿ÉÒÔÔÚÌõ¼Ç±¾ÖÐÔËÐдúÂ룬ÏÔʾЧ¹û£¬²¢ÉúÑÄÕû¸öÌõ¼Ç±¾ÒÔ¹©ºóÐøʹÓá£
°ì·¨5£º×°ÖÃÊý¾Ý¿ÆѧÏà¹ØÀ©Õ¹
³ýÁËPythonºÍJupyterÀ©Õ¹£¬ÉÐÓÐÐí¶àÆäËûÀ©Õ¹¿ÉÒÔ×ÊÖúÄú¾ÙÐÐÊý¾Ý¿ÆѧÊÂÇé¡£ÒÔÏÂÊÇһЩ³£ÓõÄÊý¾Ý¿ÆѧÀ©Õ¹ÍƼö£º
Python Docstring Generator£º×Ô¶¯ÌìÉúPythonº¯ÊýµÄÎĵµ×Ö·û´®¡£
Python Autopep8£º×Ô¶¯ÃûÌû¯Python´úÂ룬ʹÆäÇкÏPEP8¹æ·¶¡£
Python Test Explorer£ºÓÃÓÚÔËÐк͵÷ÊÔPythonµ¥Î»²âÊÔµÄÀ©Õ¹¡£
Python IntelliSense£ºÌṩPythonÓï·¨ÌáÐѺʹúÂë×Ô¶¯²¹È«¹¦Ð§¡£
Data Preview£ºÔÚVS CodeÖÐÉó²éºÍÔ¤ÀÀÊý¾Ý£¬Ö§³Ö¶àÖÖÊý¾ÝÃûÌá£
Matplotlib£ºÓÃÓÚÊý¾Ý¿ÉÊÓ»¯µÄPython¿â£¬¿ÉÒÔÔÚVS CodeÖоÙÐÐͼ±í»æÖÆ¡£
Pandas£ºÓÃÓÚÊý¾Ý´¦ÀíºÍÆÊÎöµÄPython¿â£¬Àû±ãÔÚVS CodeÖоÙÐÐÊý¾Ý¿ÆѧʹÃü¡£
ÒÔÉÏÀ©Õ¹Ö»ÊÇһЩÍƼö£¬Äú¿ÉÒÔƾ֤×Ô¼ºµÄÐèÇóÑ¡ÔñÊʺÏ×Ô¼ºµÄÀ©Õ¹¡£
°ì·¨6£ºÖ´ÐÐÊý¾Ý¿ÆѧʹÃü
ÉèÖúÃVS Codeºó£¬Äú¿ÉÒÔ×îÏÈÖ´ÐÐһЩ³£¼ûµÄÊý¾Ý¿ÆѧʹÃüÁË¡£ÒÔÏÂÊÇһЩ³£¼ûʹÃüµÄ´úÂëʾÀý£º
Êý¾Ý´¦Àí£º
import pandas as pd # ¶ÁÈ¡csvÎļþ data = pd.read_csv('data.csv') # Éó²éÊý¾ÝÇ°¼¸ÐÐ print(data.head()) # ¶ÔÊý¾Ý¾ÙÐÐϴ媺Íת»» # ... # ÉúÑÄ´¦ÀíºóµÄÊý¾Ý data.to_csv('cleaned_data.csv', index=False)
µÇ¼ºó¸´ÖÆ
Êý¾Ý¿ÉÊÓ»¯£º
import matplotlib.pyplot as plt import pandas as pd # ¶ÁÈ¡Êý¾Ý data = pd.read_csv('data.csv') # »æÖÆÖù״ͼ plt.bar(data['x'], data['y']) plt.xlabel('x') plt.ylabel('y') plt.title('Bar Chart') plt.show()
µÇ¼ºó¸´ÖÆ
»úеѧϰ£º
from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression # ¶ÁÈ¡Êý¾Ý data = pd.read_csv('data.csv') # »®·ÖѵÁ·¼¯ºÍ²âÊÔ¼¯ X_train, X_test, y_train, y_test = train_test_split(data[['x']], data['y'], test_size=0.2) # ½¨ÉèÏßÐԻعéÄ£×Ó model = LinearRegression() # ѵÁ·Ä£×Ó model.fit(X_train, y_train) # Õ¹Íû y_pred = model.predict(X_test) # ÅÌËãÄ£×ÓµÄÐÔÄÜÖ¸±ê # ...
µÇ¼ºó¸´ÖÆ
ͨ¹ýÉÏÊö´úÂëʾÀý£¬Äú¿ÉÒÔÔÚVS CodeÖоÙÐÐÊý¾Ý´¦Àí¡¢Êý¾Ý¿ÉÊÓ»¯ºÍ»úеѧϰµÈÊý¾Ý¿ÆѧʹÃü¡£ÔÚVS CodeÖбàд´úÂ룬Äú¿ÉÒÔʹÓø»ºñµÄÀ©Õ¹¹¦Ð§ºÍ´úÂë±à¼¹¤¾ß£¬Ìá¸ßÊÂÇéЧÂÊ¡£
×ܽá
±¾ÎÄÏÈÈÝÁËÔõÑùÔÚLinuxÉÏʹÓÃVisual Studio Code¾ÙÐÐÊý¾Ý¿ÆѧÊÂÇéµÄÍƼöÉèÖá£Í¨¹ý׼ȷÉèÖÃPythonÚ¹ÊÍÆ÷¡¢×°ÖÃÏà¹ØÀ©Õ¹£¬²¢Ê¹ÓÃJupyterÌõ¼Ç±¾£¬Äú¿ÉÒÔÔÚVS CodeÖоÙÐÐÊý¾Ý´¦Àí¡¢Êý¾Ý¿ÉÊÓ»¯ºÍ»úеѧϰµÈʹÃü¡£Ï£ÍûÕâЩÉèÖúÍʾÀý´úÂë¿ÉÒÔΪÄúµÄÊý¾Ý¿ÆѧÊÂÇéÌṩ×ÊÖú¡£
ÒÔÉϾÍÊÇÔÚLinuxÉÏʹÓÃVisual Studio Code¾ÙÐÐÊý¾Ý¿ÆѧµÄÍƼöÉèÖõÄÏêϸÄÚÈÝ£¬¸ü¶àÇë¹Ø×¢±¾ÍøÄÚÆäËüÏà¹ØÎÄÕ£¡