尊龙凯时人生就是博

ÔÚLinuxÉÏʹÓÃVisual Studio Code¾ÙÐÐÊý¾Ý¿ÆѧµÄÍƼöÉèÖÃ

ÔÚlinuxÉÏʹÓÃvisual studio code¾ÙÐÐÊý¾Ý¿ÆѧµÄÍƼöÉèÖÃ

Ëæ×ÅÊý¾Ý¿ÆѧµÄ¿ìËÙÉú³¤£¬Ô½À´Ô½¶àµÄÊý¾ÝÆÊÎöʦºÍÊý¾Ý¿Æѧ¼ÒÑ¡ÔñʹÓÃVisual Studio Code£¨¼ò³ÆVS Code£©¾ÙÐÐÊý¾Ý¿ÆѧÊÂÇé¡£VS CodeÊÇ΢Èí¿ª·¢µÄÒ»¿î¿ªÔ´ÇáÁ¿¼¶´úÂë±à¼­Æ÷£¬Ò²ÊÇÒ»¸ö¹¦Ð§¸»ºñµÄ¼¯³É¿ª·¢ÇéÐΣ¨IDE£©¡£Ëü¾ßÓи»ºñµÄÀ©Õ¹¹¦Ð§£¬¿ÉÒÔÖª×ãÊý¾Ý¿Æѧ¼ÒµÄÐèÇ󣬲¢ÇÒÍêÈ«Ãâ·Ñ¡£

±¾ÎĽ«ÏÈÈÝÔõÑùÔÚLinuxÉÏ׼ȷÉèÖÃVS CodeÒÔ¾ÙÐÐÊý¾Ý¿ÆѧÊÂÇ飬²¢Ö´ÐÐһЩ³£¼ûµÄÊý¾Ý¿ÆѧʹÃü£¬ÈçÊý¾Ý´¦Àí¡¢¿ÉÊÓ»¯ºÍ»úеѧϰ¡£

°ì·¨1£º×°ÖÃVS Code

Ê×ÏÈ£¬ÄúÐèÒªÔÚLinuxÉÏ×°ÖÃVS Code¡£Äú¿ÉÒÔ´ÓVS CodeµÄ¹Ù·½ÍøÕ¾https://code.visualstudio.com/ ÏÂÔØÊÊÓÃÓÚLinuxµÄ×°Öðü£¬»òÕßͨ¹ý°ü¹ÜÀíÆ÷¾ÙÐÐ×°Öá£×°ÖÃÍêºó£¬ÇëÈ·±£VS Code¿ÉÒÔÔÚÏÂÁîÐÐÖÐͨ¹ý”code”ÏÂÁîÆô¶¯¡£

°ì·¨2£º×°ÖÃPythonÀ©Õ¹

ÔÚVS CodeÖУ¬´ó´ó¶¼Êý¾Ý¿ÆѧÊÂÇ鶼ÊÇʹÓÃPython¾ÙÐеÄ¡£Òò´Ë£¬ÎÒÃÇÐèҪװÖÃPythonÀ©Õ¹ÒÔ±ãÓÚÔÚVS CodeÖбàд¡¢ÔËÐк͵÷ÊÔPython´úÂë¡£·­¿ªVS Code£¬µã»÷×ó²àµÄÀ©Õ¹Í¼±ê£¨»ò°´ÏÂCtrl+Shift+X£©£¬ÔÚËÑË÷À¸ÖÐÊäÈë”Python”£¬µã»÷×°ÖÃÃûΪ”Python”µÄÀ©Õ¹¡£

°ì·¨3£ºÉèÖÃPythonÚ¹ÊÍÆ÷

×°ÖÃÍêPythonÀ©Õ¹ºó£¬ÄúÐèÒªÉèÖÃVS CodeʹÓÃ׼ȷµÄPythonÚ¹ÊÍÆ÷¡£µã»÷VS Code×óϽǵĔPython”Ñ¡Ôñ¿ò£¬ÔÚµ¯³öµÄ²Ëµ¥ÖÐÑ¡ÔñÄúÏëҪʹÓõÄPythonÚ¹ÊÍÆ÷¡£ÈôÊÇÄúµÄϵͳÖÐ×°ÖÃÁ˶à¸öPython°æ±¾£¬¿ÉÒÔÑ¡ÔñºÏÊʵİ汾¡£ÈôÊÇûÓÐÕÒµ½ÄúÏëÒªµÄÚ¹ÊÍÆ÷£¬ÄúÐèÒªÊÖ¶¯Ö¸¶¨PythonÚ¹ÊÍÆ÷µÄ·¾¶¡£

°ì·¨4£ºÊ¹ÓÃJupyterÌõ¼Ç±¾

JupyterÌõ¼Ç±¾ÊÇÒ»¸ö³£ÓõĽ»»¥Ê½±à³Ì¹¤¾ß£¬¹ØÓÚÊý¾Ý¿ÆѧÊÂÇéºÜÊÇÓÐ×ÊÖú¡£ÔÚVS CodeÖУ¬ÎÒÃÇ¿ÉÒÔͨ¹ý×°ÖÃJupyterÀ©Õ¹À´Ê¹ÓÃJupyterÌõ¼Ç±¾¡£·­¿ªVS Code£¬µã»÷×ó²àµÄÀ©Õ¹Í¼±ê£¬ÔÚËÑË÷À¸ÖÐÊäÈë”Jupyter”£¬µã»÷×°ÖÃÃûΪ”Jupyter”µÄÀ©Õ¹¡£

×°ÖÃÍêJupyterÀ©Õ¹ºó£¬Äú¿ÉÒÔͨ¹ýµã»÷VS Code×óÉϽǵĔÎļþ”²Ëµ¥£¬Ñ¡Ôñ”н¨”->”Ìõ¼Ç±¾”À´½¨ÉèÒ»¸öеÄJupyterÌõ¼Ç±¾¡£Äú¿ÉÒÔÔÚÌõ¼Ç±¾ÖÐÔËÐдúÂ룬ÏÔʾЧ¹û£¬²¢ÉúÑÄÕû¸öÌõ¼Ç±¾ÒÔ¹©ºóÐøʹÓá£

°ì·¨5£º×°ÖÃÊý¾Ý¿ÆѧÏà¹ØÀ©Õ¹

³ýÁËPythonºÍJupyterÀ©Õ¹£¬ÉÐÓÐÐí¶àÆäËûÀ©Õ¹¿ÉÒÔ×ÊÖúÄú¾ÙÐÐÊý¾Ý¿ÆѧÊÂÇé¡£ÒÔÏÂÊÇһЩ³£ÓõÄÊý¾Ý¿ÆѧÀ©Õ¹ÍƼö£º

Python Docstring Generator£º×Ô¶¯ÌìÉúPythonº¯ÊýµÄÎĵµ×Ö·û´®¡£

Python Autopep8£º×Ô¶¯ÃûÌû¯Python´úÂ룬ʹÆäÇкÏPEP8¹æ·¶¡£

Python Test Explorer£ºÓÃÓÚÔËÐк͵÷ÊÔPythonµ¥Î»²âÊÔµÄÀ©Õ¹¡£

Python IntelliSense£ºÌṩPythonÓï·¨ÌáÐѺʹúÂë×Ô¶¯²¹È«¹¦Ð§¡£

Data Preview£ºÔÚVS CodeÖÐÉó²éºÍÔ¤ÀÀÊý¾Ý£¬Ö§³Ö¶àÖÖÊý¾ÝÃûÌá£

Matplotlib£ºÓÃÓÚÊý¾Ý¿ÉÊÓ»¯µÄPython¿â£¬¿ÉÒÔÔÚVS CodeÖоÙÐÐͼ±í»æÖÆ¡£

Pandas£ºÓÃÓÚÊý¾Ý´¦ÀíºÍÆÊÎöµÄPython¿â£¬Àû±ãÔÚVS CodeÖоÙÐÐÊý¾Ý¿ÆѧʹÃü¡£

ÒÔÉÏÀ©Õ¹Ö»ÊÇһЩÍƼö£¬Äú¿ÉÒÔƾ֤×Ô¼ºµÄÐèÇóÑ¡ÔñÊʺÏ×Ô¼ºµÄÀ©Õ¹¡£

°ì·¨6£ºÖ´ÐÐÊý¾Ý¿ÆѧʹÃü

ÉèÖúÃVS Codeºó£¬Äú¿ÉÒÔ×îÏÈÖ´ÐÐһЩ³£¼ûµÄÊý¾Ý¿ÆѧʹÃüÁË¡£ÒÔÏÂÊÇһЩ³£¼ûʹÃüµÄ´úÂëʾÀý£º

Êý¾Ý´¦Àí£º

import pandas as pd

# ¶ÁÈ¡csvÎļþ
data = pd.read_csv('data.csv')

# Éó²éÊý¾ÝÇ°¼¸ÐÐ
print(data.head())

# ¶ÔÊý¾Ý¾ÙÐÐϴ媺Íת»»
# ...

# ÉúÑÄ´¦ÀíºóµÄÊý¾Ý
data.to_csv('cleaned_data.csv', index=False)

µÇ¼ºó¸´ÖÆ

Êý¾Ý¿ÉÊÓ»¯£º

import matplotlib.pyplot as plt
import pandas as pd

# ¶ÁÈ¡Êý¾Ý
data = pd.read_csv('data.csv')

# »æÖÆÖù״ͼ
plt.bar(data['x'], data['y'])
plt.xlabel('x')
plt.ylabel('y')
plt.title('Bar Chart')
plt.show()

µÇ¼ºó¸´ÖÆ

»úеѧϰ£º

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

# ¶ÁÈ¡Êý¾Ý
data = pd.read_csv('data.csv')

# »®·ÖѵÁ·¼¯ºÍ²âÊÔ¼¯
X_train, X_test, y_train, y_test = train_test_split(data[['x']], data['y'], test_size=0.2)

# ½¨ÉèÏßÐԻعéÄ£×Ó
model = LinearRegression()

# ѵÁ·Ä£×Ó
model.fit(X_train, y_train)

# Õ¹Íû
y_pred = model.predict(X_test)

# ÅÌËãÄ£×ÓµÄÐÔÄÜÖ¸±ê
# ...

µÇ¼ºó¸´ÖÆ

ͨ¹ýÉÏÊö´úÂëʾÀý£¬Äú¿ÉÒÔÔÚVS CodeÖоÙÐÐÊý¾Ý´¦Àí¡¢Êý¾Ý¿ÉÊÓ»¯ºÍ»úеѧϰµÈÊý¾Ý¿ÆѧʹÃü¡£ÔÚVS CodeÖбàд´úÂ룬Äú¿ÉÒÔʹÓø»ºñµÄÀ©Õ¹¹¦Ð§ºÍ´úÂë±à¼­¹¤¾ß£¬Ìá¸ßÊÂÇéЧÂÊ¡£

×ܽá

±¾ÎÄÏÈÈÝÁËÔõÑùÔÚLinuxÉÏʹÓÃVisual Studio Code¾ÙÐÐÊý¾Ý¿ÆѧÊÂÇéµÄÍƼöÉèÖá£Í¨¹ý׼ȷÉèÖÃPythonÚ¹ÊÍÆ÷¡¢×°ÖÃÏà¹ØÀ©Õ¹£¬²¢Ê¹ÓÃJupyterÌõ¼Ç±¾£¬Äú¿ÉÒÔÔÚVS CodeÖоÙÐÐÊý¾Ý´¦Àí¡¢Êý¾Ý¿ÉÊÓ»¯ºÍ»úеѧϰµÈʹÃü¡£Ï£ÍûÕâЩÉèÖúÍʾÀý´úÂë¿ÉÒÔΪÄúµÄÊý¾Ý¿ÆѧÊÂÇéÌṩ×ÊÖú¡£

ÒÔÉϾÍÊÇÔÚLinuxÉÏʹÓÃVisual Studio Code¾ÙÐÐÊý¾Ý¿ÆѧµÄÍƼöÉèÖõÄÏêϸÄÚÈÝ£¬¸ü¶àÇë¹Ø×¢±¾ÍøÄÚÆäËüÏà¹ØÎÄÕ£¡

ÃâÔð˵Ã÷£ºÒÔÉÏչʾÄÚÈÝȪԴÓÚÏàÖúýÌå¡¢ÆóÒµ»ú¹¹¡¢ÍøÓÑÌṩ»òÍøÂçÍøÂçÕûÀí£¬°æȨÕùÒéÓë±¾Õ¾Î޹أ¬ÎÄÕÂÉæ¼°¿´·¨Óë¿´·¨²»´ú±í尊龙凯时人生就是博ÂËÓÍ»úÍø¹Ù·½Ì¬¶È£¬Çë¶ÁÕß½ö×ö²Î¿¼¡£±¾ÎĽӴýתÔØ£¬×ªÔØÇë˵Ã÷À´ÓÉ¡£ÈôÄúÒÔΪ±¾ÎÄÇÖÕ¼ÁËÄúµÄ°æȨÐÅÏ¢£¬»òÄú·¢Ã÷¸ÃÄÚÈÝÓÐÈκÎÉæ¼°ÓÐÎ¥¹«µÂ¡¢Ã°·¸Ö´·¨µÈÎ¥·¨ÐÅÏ¢£¬ÇëÄúÁ¬Ã¦ÁªÏµ尊龙凯时人生就是博ʵʱÐÞÕý»òɾ³ý¡£

Ïà¹ØÐÂÎÅ

ÁªÏµ尊龙凯时人生就是博

18523999891

¿É΢ÐÅÔÚÏß×Éѯ

ÊÂÇéʱ¼ä£ºÖÜÒ»ÖÁÖÜÎ壬9:30-18:30£¬½ÚãåÈÕÐÝÏ¢

QR code
sitemap¡¢ÍøÕ¾µØͼ