ÉèÖÃLinuxϵͳÒÔÖ§³ÖÖÇÄܽ»Í¨ºÍÖÇÄÜÎïÁ÷¿ª·¢
ÉèÖÃlinuxϵͳÒÔÖ§³ÖÖÇÄܽ»Í¨ºÍÖÇÄÜÎïÁ÷¿ª·¢
ÖÇÄܽ»Í¨ºÍÖÇÄÜÎïÁ÷ÊÇÏÖ´ú¿Æ¼¼µÄÖ÷ÒªÓ¦ÓÃÁìÓò£¬Í¨¹ýÕûºÏÎïÁªÍø¡¢È˹¤ÖÇÄܺʹóÊý¾ÝµÈÊÖÒÕ£¬¿ÉÒÔʵÏÖ½»Í¨Á÷Á¿ÓÅ»¯¡¢ÎïÁ÷·¾¶ÍýÏëºÍÔËÊäЧÂÊÌáÉý¡£ÔÚÕâ¸öÀú³ÌÖУ¬ÉèÖÃLinuxϵͳ³ÉΪÖÁ¹ØÖ÷ÒªµÄÒ»²½¡£±¾ÎĽ«ÏÈÈÝÔõÑùÉèÖÃLinuxϵͳÒÔÖ§³ÖÖÇÄܽ»Í¨ºÍÖÇÄÜÎïÁ÷µÄ¿ª·¢£¬Í¬Ê±ÌṩÏìÓ¦µÄ´úÂëʾÀý¡£
Ê×ÏÈ£¬ÎÒÃÇÐèҪװÖÃÐëÒªµÄÈí¼þ°üºÍÒÀÀµÏî¡£ÔÚUbuntuϵͳÖУ¬¿ÉÒÔʹÓÃÒÔÏÂÏÂÁî×°ÖÃËùÐèµÄÈí¼þ°ü£º
sudo apt-get update sudo apt-get install -y python3 python3-pip pip3 install numpy pandas tensorflow
µÇ¼ºó¸´ÖÆ
ÉÏÊöÏÂÁî»á¸üÐÂϵͳÈí¼þ°üÐÅÏ¢£¬²¢×°ÖÃPython3ºÍÏà¹ØµÄÈí¼þ°ü£¬ÆäÖÐTensorFlowÊÇÒ»¸öÊ¢ÐеĻúеѧϰ¿ò¼Ü£¬ÔÚÖÇÄܽ»Í¨ºÍÖÇÄÜÎïÁ÷ÖÐÆÕ±éÓ¦Óá£
½ÓÏÂÀ´£¬ÎÒÃÇÐèÒªÉèÖÃÇéÐαäÁ¿ÒÔ±ãϵͳ¿ÉÒÔ׼ȷµØʶ±ð²¢ÔËÐÐPython³ÌÐò¡£ÔÚUbuntuϵͳÖУ¬¿ÉÒÔͨ¹ýÐÞ¸Ä.bashrcÎļþÀ´ÉèÖÃÇéÐαäÁ¿¡£Ê×ÏÈ£¬Ê¹ÓÃÒÔÏÂÏÂÁî·¿ª.bashrcÎļþ£º
nano ~/.bashrc
µÇ¼ºó¸´ÖÆ
È»ºó£¬ÔÚÎļþĩβÌí¼ÓÒÔÏÂÐУº
export PATH=$PATH:/usr/local/bin export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib
µÇ¼ºó¸´ÖÆ
ÉúÑÄÎļþ²¢Í˳ö¡£ÔËÐÐÒÔÏÂÏÂÁîʹÉèÖÃÉúЧ£º
source ~/.bashrc
µÇ¼ºó¸´ÖÆ
ÏÖÔÚ£¬ÎÒÃÇ¿ÉÒÔ×îÏÈ¿ª·¢ÖÇÄܽ»Í¨ºÍÖÇÄÜÎïÁ÷µÄÏà¹Ø¹¦Ð§¡£ÏÂÃæÊÇÒ»¸ö¼òÆÓµÄʾÀý´úÂ룬ÑÝʾÁËÔõÑùʹÓÃTensorFlow¾ÙÐн»Í¨Á÷Á¿Õ¹Íû£º
import numpy as np import pandas as pd import tensorflow as tf # µ¼ÈëÊý¾Ý¼¯ data = pd.read_csv('traffic_data.csv') X = data.iloc[:, :-1].values y = data.iloc[:, -1].values # Êý¾ÝÔ¤´¦Àí from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) # ¹¹½¨Éñ¾ÍøÂçÄ£×Ó model = tf.keras.models.Sequential() model.add(tf.keras.layers.Dense(units=32, activation='relu', input_shape=(X_train.shape[1],))) model.add(tf.keras.layers.Dense(units=16, activation='relu')) model.add(tf.keras.layers.Dense(units=1, activation='linear')) # ±àÒ벢ѵÁ·Ä£×Ó model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, y_train, batch_size=32, epochs=100, verbose=1) # Õ¹Íû²¢ÆÀ¹ÀÄ£×Ó y_pred = model.predict(X_test) mse = tf.keras.losses.mean_squared_error(y_test, y_pred).numpy() print('Mean Squared Error:', mse)
µÇ¼ºó¸´ÖÆ
ÉÏÊö´úÂëʹÓÃÁËÒ»¸ö¼òÆÓµÄÉñ¾ÍøÂçÄ£×ÓÀ´Õ¹Íû½»Í¨Á÷Á¿¡£Ïȵ¼ÈëÊý¾Ý¼¯£¬È»ºó¾ÙÐÐÊý¾ÝÔ¤´¦Àí£¬°üÀ¨²ð·ÖѵÁ·¼¯ºÍ²âÊÔ¼¯£¬²¢¾ÙÐÐÌØÕ÷Ëõ·Å¡£½ÓÏÂÀ´£¬¹¹½¨Éñ¾ÍøÂçÄ£×Ó£¬²¢Ê¹ÓÃAdamÓÅ»¯Æ÷ºÍ¾ù·½Îó²îËðʧº¯Êý±àÒëÄ£×Ó¡£×îºó£¬¾ÙÐÐÄ£×ÓѵÁ·¡¢Õ¹ÍûºÍÆÀ¹À¡£
³ýÁËÖÇÄܽ»Í¨µÄÁ÷Á¿Õ¹Íû£¬ÎÒÃÇ»¹¿ÉÒÔʹÓÃLinuxϵͳ֧³ÖµÄÆäËû¹¦Ð§À´¿ª·¢ÖÇÄÜÎïÁ÷µÄ·¾¶ÍýÏëºÍÔËÊäÓÅ»¯¡£ÀýÈ磬ÎÒÃÇ¿ÉÒÔʹÓÿªÔ´µÄ·¾¶ÍýÏë¿â£¬ÈçGraphhopper»òOSRM£¬À´ÅÌËã×î¶Ì·¾¶¡£ÎÒÃÇ»¹¿ÉÒÔʹÓÃLinuxϵͳÌṩµÄÍøÂ繤¾ß£¬ÈçIP·ÓɱíºÍQoS£¨Ð§ÀÍÖÊÁ¿£©ÉèÖã¬À´ÓÅ»¯ÎïÁ÷ÔËÊäµÄÍøÂçͨѶ¡£
×ÛÉÏËùÊö£¬Í¨¹ýÉèÖÃLinuxϵͳÒÔÖ§³ÖÖÇÄܽ»Í¨ºÍÖÇÄÜÎïÁ÷µÄ¿ª·¢£¬ÎÒÃÇ¿ÉÒÔʹÓÃÇ¿Ê¢µÄ¿ªÔ´¹¤¾ßºÍ¿â£¬ÊµÏÖ½»Í¨Á÷Á¿Õ¹Íû¡¢Â·¾¶ÍýÏëºÍÔËÊäÓÅ»¯µÈ¹¦Ð§¡£Ï£Íû±¾ÎÄÌṩµÄÉèÖúʹúÂëʾÀýÄܹ»×ÊÖú¶ÁÕ߸üºÃµØ¿ªÕ¹Ïà¹ØµÄ¿ª·¢ÊÂÇé¡£
ÒÔÉϾÍÊÇÉèÖÃLinuxϵͳÒÔÖ§³ÖÖÇÄܽ»Í¨ºÍÖÇÄÜÎïÁ÷¿ª·¢µÄÏêϸÄÚÈÝ£¬¸ü¶àÇë¹Ø×¢±¾ÍøÄÚÆäËüÏà¹ØÎÄÕ£¡